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Abstract 
In this article, we consider the issues of applying the diakoptic approach to constructing a 

topological drawing of the planar part of a non-planar graph. It is demonstrated that the first 
stage of constructing a topological drawing is based on the matroid properties of the set of 
graph isometric cycles. In the article, we propose a method for constructing a topological 
drawing of the planar part of a non-planar graph using the methods of structure numbers al-
gebra. The initial solution is based on the set of graph isometric cycles that allows application 
of discrete optimization methods. The second stage of joining the cycles is based on the 
methods of vector algebra of intersections. In the article we describe the essential mathemati-
cal concepts and structures for solving the problem of constructing a planar topological draw-
ing of a non-planar graph. The presentation is supported by detailed illustrative examples. 
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1. Introduction 
The problem of constructing the maximal planar subgraph of a non-planar graph is a com-
mon task in the graph visual construction. It was demonstrated in [1] that the problem of 
constructing a maximal planar subgraph of a non-planar graph is NP-complete. Thus, it can 
be solved by a restricted class of brute force search algorithms and there is no polynomial al-
gorithm for its solvability. 
We will further consider an approximate solution to the problem in a general form, without 
dwelling on the details of methods and algorithms, but highlighting the main stages. To solve 
the problem, we will follow the principles of diakoptics [2], that is, we divide the solution into 
interconnected parts. 
Let us consider the graph G = (V, E) with a numbered set of edges E = {e1,e2,...,em} and a 
numbered set of vertices V = {v1,v2,...,vn}, wherein card(V) = n and card(E) = m. Next, let’s 
select the nonseparable part of the graph. 
Definition 1. By a nonseparable graph G, we mean a connected undirected graph without 
loops and multiple edges, without bridges and articulation points (cut vertices), in which the 
degree of each vertex is more than two. 
Thus, diakoptics allows applying a mathematical model based on the cyclomatic properties of 
a graph, and thereby connect MacLane’s theorem to the solution of the problem. Then the so-
lution process can be represented as consisting of the following two successive stages: 

 constructing a maximal planar subgraph for a nonseparable subgraph; 
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 adding unit edges to the solution until obtaining a separable maximal planar subgraph 
(even with no additional edges). 
In such a model, the major role is played by graph simple cycles. Therefore, the problem of 
constructing a maximal planar subgraph can be reduced to the combinatorial optimization 
problem. 
Combinatorial optimization problem: on the set of simple cycles, find a subset of inde-
pendent cycles, which represents a planar subgraph and satisfies a zero value of MacLane 
functional and Euler's equation with the maximum number of edges. 
Such a problem statement allows treating the enumeration problem as a representative of the 
class of combinatorial optimization problems. Hence, the well-developed mathematical 
framework of discrete optimization can be applied to solve the problem. In addition, the cy-
clomatic approach allows strictly and unambiguously describing the topological drawing of 
the planar part of a graph, since the independent system of cycles obtained as a result of the 
solution induces (generates) the rotation of graph vertices. Indeed, according to the theory of 
rotations, the rotation of vertices creates a topological drawing of a graph [3]. 

2. Isometric cycles and matroids 
Definition 2. An isometric cycle in a graph is a simple cycle for which the shortest path be-
tween any two of its vertices consists of the edges belonging to this cycle. 
An isometric cycle is essentially a special case of an isometric subgraph [4]. 

In other words, an isometric cycle in a graph G is a subgraph G in the form of a simple cycle, 
where between any two non-adjacent vertices of the given subgraph in the graph G there are 
no paths of shorter length, than the paths belonging to this cycle. 
We will search of a solution on the set of graph isometric cycles. The set of isometric cycles of 
a graph is a matroid [5]. 
Definition 3. A matroid M is a finite set S and a set F of subsets of S such that the following 
conditions, called independence conditions, are satisfied: 

  F (1) 

If Z  F and Y  Z, then Y  F (2) 

If Z and Y – are members of F and Z=Y+1, then exists such z  Z – Y, 

 that Y  z  F 
(3) 

In expression (3), subtracting Z – Y is understood as Z / (Z  Y). Elements of the set S are 
called elements of the matroid M. Members of the set F are called sets of the matroid M. The 
maximal as for inclusion independent set of the matroid M is called the base of the matroid 
M. The set of bases of the matroid M is denoted by B(M) or simply B. 
A subset S that does not belong to the set F is called dependent. The minimal as for inclusion 
dependent subset S is called the cycle of the matroid M. The set of cycles of the matroid M is 

denoted by  (M) or simply  . 

Let us further denote the set of graph isometric cycles by C
. In turn, the set of matroid bases 

of isometric cycles will be denoted by YC . The basis of the linear subspace of cycles consisting 

of isometric cycles of cardinality equal to the cyclomatic number of the graph 1)(  nmG  

will be denoted as bc
 and called the configuration. In turn, bb Cc 

, where bC
 is a set of con-

figurations. It is natural to assume that Yb Cc 
. 

A set of configurations can be represented as a structural number W, where each column (el-
ement) characterizes the configuration. On the other hand, a structural number can be repre-
sented as a product of single-line structural numbers characterizing isometric cycles passing 
along a selected chord. Moreover, according to the rules of the structural numbers algebra 
[6], the selection of a graph tree does not affect the final result. 



 

 

In turn, a subset of cycles can be associated with two vectors: the vector of cycles along the 
edges Pe, which determines the number of isometric cycles passing along the edges of the giv-
en subset, and the vector of cycles passing through the vertices Pv, which determines the 
number of isometric cycles passing through the vertices of a given subset. 
The planar part of a non-planar graph must satisfy a zero value of the MacLane functional [7]: 
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where ai – are coefficients of the vector Pe.  
Configuration requirements: 

1. The configuration should be linearly independent. 
2. The value of the MacLane functional for the configuration should tend to the minimum 

value. 
3. There should be no zero elements in the vector of cycles along the edges for the config-

uration. 
4. The vector of cycles along the edges for the configuration must necessarily contain sin-

gle elements. 
5. There should be no zero elements in the vector of cycles through vertices for the con-

figuration. 
Obviously, the value of the MacLane functional for the configuration of a non-planar graph is 
greater than zero. Therefore, in order to achieve a zero value of the MacLane functional, it is 
necessary to remove some part of the cycles. We can use the operation of differentiating the 
structural number W of isometric cycles [8, 9] to model the the process of removing cycles by 
the gradient descent method. 
We illustrate the process of constructing the planar part of a non-planar nonseparable graph 
with specific examples, as during explanation it is necessary to introduce new non-
conventional terms and definitions. Let’s consider the foregoing by the example of the follow-
ing undirected graph. 
 

 
Fig. 1. Graph G. 

 
The number of isometric cycles of the graph is 20. They are distributed according to lengths 
as follows: lengths 4–13 cycles, lengths 6–7 cycles. 

The cycles of the corresponding matroid  ( C
) consist of 6 sets, each containing 3 isometric 

cycles, as well as of 2 sets containing 4 cycles, and so on. 
As an example, consider one of the matroid cycles shown in Fig. 2: 



 

 

 
Fig. 2. A topological drawing of the 18th cycle of the matroid. 

 

c18   c17   c14   c1   c7   c9   c15 = {e14,e15,e20,e22}   {e12,e15,e18,e19}    
  {e1,e2,e9,e10,e12,e14}   {e1,e2,e4,e5}   {e4,e7,e9,e11}   {e5,e7,e18,e19,e21,e22}    
  {e10,e11,e20,e21} =   
If we remove the following cycles from the set of isometric cycles: {с6,с9,с14,с12,с16,с13}, then we 
get the element of the matroid base consisting of 14 cycles. 
The set of independent cycles belonging to the selected element of the matroid base will be 
further called the truncated set of isometric cycles. In turn, truncated sets of isometric cycles 
form the base of the matroid. 
Next, we form single-line structural numbers for a truncated set of isometric cycles. For the 
selected graph tree T = {e1,e4,e5,e8,e10,e12,e13,e17,e19,e20,e21,e22} the set of chords is as follows: 
H = {e2,e3,e6,e7,e9,e11,e14,e15,e16,e18}. And then for the set of isometric cycles, single-line struc-
tural numbers have the following form: 

the cycles passing through the chord e2: [c1,c4,c5,c14]; 
the cycles passing through the chord e3: [c2,c3,c4,c5]; 
the cycles passing through the chord e6: [c6,c8,c10,c20]; 
the cycles passing through the chord e7: [c7,c9,c10,c11,c12,c20]; 
the cycles passing through the chord e9: [c2,c3,c6,c7,c14]; 
the cycles passing through the chord e11: [c7,c10,c15]; 
the cycles passing through the chord e14: [c3,c12,c13,c14,c18]; 
the cycles passing through the chord e15: [c11,c17,c18,c19,c20]; 
the cycles passing through the chord e16: [c2,c3,c4,c16,c19]; 
the cycles passing through the chord e18: [c5,c9,c16,c17]. 

We construct single-line structural numbers for a truncated set of isometric cycles. The length 
of an element of a structural number is always equal to the number of chords in the graph, in 
this case, ten. 
Using the line search algorithm, we select the entire set of elements of the truncated structur-
al number W and compute their number. The quantity of structural number elements for our 
example is 594. 
Truncated single-line structural numbers: 

the cycles passing through the chord e14: [c3,c18]; 
the cycles passing through the chord e18: [c5,c17]; 
the cycles passing through the chord e2: [c1,c4,c5]; 
the cycles passing through the chord e6: [c8,c10,c20]; 
the cycles passing through the chord e9: [c2,c3,c7]; 
the cycles passing through the chord e11: [c7,c10,c15]; 



 

 

the cycles passing through the chord e3: [c2,c3,c4,c5]; 
the cycles passing through the chord e7: [c7,c10,c11,c20]; 
the cycles passing through the chord e16: [c2,c3,c4,c19]; 
the cycles passing through the chord e15: [c11,c17,c18,c19,c20]; 

Elements of a truncated structural number (configuration) have the form (e.g., consider the 
172nd and 173rd elements): 

…………………………………………………………………………… 
172nd element – {c3,c5,c1,c20,c7,c10,c2,c11,c4,c18}; 
173rd element – {c3,c5,c1,c20,c7,c10,c2,c11,c4,c19}; 
……………………………………………………………….…………… 

Approximately the quantity of structural number elements can be calculated by the formula: 
])!1()!1/[(!  nmnmkkk uu  (5) 

where ku – is the cardinality of a truncated set of isometric cycles. 
Naturally, the Monte Carlo method should be used for creating practical systems of approxi-
mate solutions for isolating the planar part of a non-planar graph,. That is, using gradient de-
scent method, randomly select a large number of configurations. Then, select the appropriate 
solution using the MacLane functional as the objective function and formalizing the process 
as taking the inverse derivative of the structural number. 
The following conditions must be observed for the planar part of configuration: 

1. When the cycle is excluded from the configuration (or when the operation of structural 
number differentiation is applied), the Pontryagin–Kuratowski functional should be used as 
the objective function. 

2. When excluding cycles from the configuration, the rule must be fulfilled: when exclud-
ing one cycle, one and only one edge must be removed. 

3. As a result of the exclusion of cycles, a subsystem of cycles should be formed that has a 
zero value of the Pontryagin–Kuratowski functional. Such a subsystem is called a planar con-
figuration. 
In turn, a planar configuration must satisfy a number of requirements: 

1. For a planar configuration, the Euler's law must be satisfied. 
2. A linear combination of cycles of a planar configuration must necessarily form a rim 

that characterizes a non-empty connected simple cycle. 
3. The determined subgraph should be connected and should not contain articulation 

points. 
4. The cycles of a planar configuration should induce the rotation of vertices, which de-

scribes the topological drawing of the planar part of a graph. 

3. Planar configurations for a nonseparable non-planar 
graph 
By randomly generating configurations using the gradient descent method, we obtain the fol-
lowing planar configurations: 
Table 3.1. Planar configuration 1. 
 The set of graph cycles 

in the form of edges: 
The set of graph cycles 
in the form of vertices: 

The tuple of isometric 
cycles vertices: 

с16  {e12,e16,e17,e18}  {v9,v5,v11,v4} <v9,v5,v11,v4> 
c1  {e1,e2,e4,e5}  {v7,v2,v9,v1} <v1,v9,v2,v7> 
с6  {e4,e6,e8,e9}  {v7,v3,v8,v2} <v2,v8,v3,v7> 
с8  {e5,e6,e12,e13}  {v9,v4,v8,v2} <v9,v4,v8,v2> 
с18  {e14,e15,e20,e22}  {v13,v6,v12,v4} <v4,v12,v6,v13> 
с15  {e10,e11,e20,e21}  {v13,v6,v10,v3} <v13,v6,v10,v3> 
с5  {e2,e3,e17,e18}  {v9,v5,v11,v1} <v1,v11,v5,v9> 
с13  {e8,e10,e13,e14}  {v8,v4,v13,v3} <v8,v4,v13,v3> 



 

 

rim {e16,e1,e9,e15,e22,e11,e21,e3} {v11,v1,v7,v3,v10,v6,v12,v4} <v11,v1,v7,v3,v10,v6,v12,v4> 

 
Fig. 3. Topological drawing of the planar configuration 1. 

 
During planarization the edges е7 and е19 were removed. 
Vertices rotation of the plane graph:  

rotation of the vertex v1: v11 v7 v9 v11    
rotation of the vertex v2: v8 v9 v7 v8    
rotation of the vertex v3: v7   v10   v11 v7      
rotation of the vertex v4: v11    v9    v8   v13 v12    v11     
rotation of the vertex v5: v9 v11    v9     
rotation of the vertex v6: v13   v10   v13     
rotation of the vertex v7: v1    v3 v2 v1       
rotation of the vertex v8: v4 v2 v3 v4    
rotation of the vertex v9: v4    v5    v1    v2    v4   
rotation of the vertex v10: v3    v6    v3        
rotation of the vertex v11: v5    v4    v1    v5       
rotation of the vertex v12: v4    v6    v4        
rotation of the vertex v13: v4    v3    v6    v4       

Table 3.2. Planar configuration 2. 
 The set of graph cycles 

in the form of edges: 
The set of graph cycles 
in the form of vertices: 

The tuple of isometric 
cycles vertices: 

с15  {e10,e11,e20,e21}  {v13,v6,v10,v3} <v13,v6,v10,v3> 
с8  {e5,e6,e12,e13}  {v9,v4,v8,v2} <v9,v4,v8,v2> 
с16  {e12,e16,e17,e18}  {v9,v5,v11,v4} <v9,v5,v11,v4> 
с13  {e8,e10,e13,e14}  {v8,v4,v13,v3} <v8,v4,v13,v3> 
с5  {e2,e3,e17,e18}  {v9,v5,v11,v1} <v1,v11,v5,v9> 
с6  {e4,e6,e8,e9}  {v7,v3,v8,v2} <v2,v8,v3,v7> 
с18  {e14,e15,e20,e22}  {v13,v6,v12,v4} <v4,v12,v6,v13> 
с7  {e4,e7,e9,e11}  {v7,v3,v10,v2} <v7,v3,v10,v2> 
rim {e21,e5,e16,e2,e3,e15,e22,e7} {v10,v2,v9,v1,v11,v4,v12,v6} <v6,v12,v4,v11,v1,v9,v2,v10> 



 

 

 
Fig. 4. Planar configuration 2. 

 
During planarization the edges е1 and е19 were removed. 
Vertices rotation of the plane graph:  

rotation of the vertex v1: v11 v9 v11     
rotation of the vertex v2: v10 v7 v8 v9 v10   
rotation of the vertex v3: v10 v13 v8 v7 v10   
rotation of the vertex v4: v8 v13 v12 v11 v9 v8  
rotation of the vertex v5: v9 v11    v9     
rotation of the vertex v6: v13   v10   v12   v13    
rotation of the vertex v7: v2 v3 v2     
rotation of the vertex v8: v3 v4 v2 v3    
rotation of the vertex v9: v1    v2    v4    v5    v1      
rotation of the vertex v10: v6    v3    v2    v6       
rotation of the vertex v11: v4    v1    v5    v4       
rotation of the vertex v12: v4    v6    v4        
rotation of the vertex v13: v3    v6    v4    v3       

Table 3.3. Planar configuration 3. 
 The set of graph cycles 

in the form of edges: 
The set of graph cycles 
in the form of vertices: 

The tuple of isometric 
cycles vertices: 

с8  {e5,e6,e12,e13}  {v9,v4,v8,v2} <v9,v4,v8,v2> 
с13  {e8,e10,e13,e14}  {v8,v4,v13,v3} <v8,v4,v13,v3> 
с17  {e12,e15,e18,e19}  {v9,v5,v12,v4} <v9,v5,v12,v4> 
с18  {e14,e15,e20,e22}  {v13,v6,v12,v4} <v4,v12,v6,v13> 
с6  {e4,e6,e8,e9}  {v7,v3,v8,v2} <v2,v8,v3,v7> 
с15  {e10,e11,e20,e21}  {v13,v6,v10,v3} <v13,v6,v10,v3> 
с5  {e2,e3,e17,e18}  {v9,v5,v11,v1} <v1,v11,v5,v9> 
c1  {e1,e2,e4,e5}  {v7,v2,v9,v1} <v1,v9,v2,v7> 
rim {e19,e22,e9,e11,e21,e3,e17,e1} {v12,v6,v10,v3,v7,v1,v11,v5} <v5,v11,v1,v7,v3,v10,v6,v12> 



 

 

 
Fig. 5. Planar configuration 3. 

 
During planarization the edges е7 and е16 were removed. 
Vertices rotation of the plane subgraph: 

rotation of the vertex v1: v7    v9   v11    v7    
rotation of the vertex v2: v8    v7    v9    v8    
rotation of the vertex v3: v8    v13   v10   v7    v8   
rotation of the vertex v4: v9    v12   v13   v8    v9   
rotation of the vertex v5: v9   v11   v12    v9    
rotation of the vertex v6: v10   v13   v12   v10    
rotation of the vertex v7: v2    v3    v1    v2    
rotation of the vertex v8: v4    v3    v2    v4    
rotation of the vertex v9: v2    v1    v5    v4    v2   
rotation of the vertex v10: v3    v6    v3     
rotation of the vertex v11: v5    v1    v5     
rotation of the vertex v12: v5    v6    v4    v5    
rotation of the vertex v13: v4    v6    v3    v4    

It should be mentioned that vertex notation of cycle tuples allows to write down cycles in vec-
tor form: 

<v9,v4,v8,v2> = (v9,v4) + (v4,v8) + (v8,v2) + (v2,v9); 
<v8,v4,v13,v3> = (v8,v4) + (v4,v13) + (v13,v3) + (v3,v8); 
<v9,v5,v12,v4> = (v9,v5) + (v5,v12) + (v12,v4) + (v4,v9); 
<v4,v12,v6,v13> = (v4,v12) + (v12,v6) + (v6,v13) + (v13,v4); 
<v2,v8,v3,v7> = (v2,v8) + (v8,v3) + (v3,v7) + (v7,v2); 
<v13,v6,v10,v3> = (v13,v6) + (v6,v10) + (v10,v3) + (v3,v13); 
<v1,v11,v5,v9> = (v1,v11) + (v11,v5) + (v5,v9) + (v9,v1); 
<v1,v9,v2,v7> = (v1,v9) + (v9,v2) + (v2,v7) + (v7,v1); 
<v5,v11,v1,v7,v3,v10,v6,v12>= (v5,v11) + (v11,v1) + (v1,v7) + (v7,v3) + (v3,v10) + (v10,v6) +  
+ (v6,v12) + (v12,v5). 

The sum of all vector transcriptions for a planar configuration is an empty set, since 

 ),(),( ijji vvvv
. 



 

 

It should be noted that the subset of cycles characterized by a zero value of the Pontryagin–
Kuratowski functional (or the MacLane functional) cannot be a planar configuration, since it 
represents a subgraph with an articulation point (r.t. Fig. 6 for illustration). 
 

с13  {e8,e10,e13,e14}  {v8,v4,v13,v3} 
с17  {e12,e15,e18,e19}  {v9,v5,v12,v4} 
с18  {e14,e15,e20,e22}  {v13,v6,v12,v4} 
с15  {e10,e11,e20,e21}  {v13,v6,v10,v3} 
с16  {e12,e16,e17,e18}  {v9,v5,v11,v4} 
с1  {e1,e2,e4,e5}  {v7,v2,v9,v1} 

 

 
Fig. 6. Subgraph with an articulation point. 

4. The stage of adding cycles to a planar configuration 
Now let us consider the next step in constructing the topological drawing of a planar sub-
graph. The theoretical rationale for this method is described in details in [10-11]. 
We consider this stage using the example of the following graph defined by the incidentor. In 
this graph, we select one of the planar configurations, e.g., the following (Fig. 7). 
 

 
Fig.7. Topological drawing of a planar configuration. 



 

 

 
Consider the rim of this planar configuration as a closed sequence of oriented edges. We call 
such a construction the coordinate-base system (CBS) [10,11]. Let’s draw the edges removed 
during the planarization process, which have two endpoint vertices compatible with the verti-
ces of the rim (see Fig. 7). 
We write CBS in the form of a closed tuple consisting of oriented edges 
<e44,e70,e71,e39,e38,e32,e33,e40,e41,e58,e56,e53,e55,e72,e51,e52,e67,e14,e13,e6,e7,e18,e17,e25,e24,e46,e49,e47, 
e68,e60,e20,e23,e35,e36,e28,e30,e43>. An undirected edge can be represented as two oppositely 
oriented directed edges (arcs or arrows). Then for each arc there is a projection (in the set-
theoretic sense) onto the coordinate-base system. Exempli gratia (Fig. 8): 
 

 
Fig. 8. Coordinate-base system and drawn edges. 

 
From two projections of the edge we select one projection, which has the minimum length. In 
accordance with the laws of the vector algebra of intersections, we assume that the edges in-
tersect if their projections intersect (in terms of the set-theory). The edges do not intersect if 
the result of the intersection of their projections is an empty set or one projection is com-
pletely included into another. 
Consider the intersections of the edge e9. From consideration follows that the edge e9 inter-
sects with all edges except the edge e50. 
To determine the removal of edges, it is necessary to consider all cases of pairwise intersec-
tion of edges. After that, we can sequentially remove edges that maximally intersect with oth-
ers. At the end of the process, the set of disjoint edges are isolated. For our example case, the 
disjoint edges are shown in Fig. 9. 
As a result, we obtain new simple cycles that can be added to existing ones. 
с15 = {e37,e43,e41,e70,e71,e39}; 
с16 = {e37,e38,e32,e33,e40,e34,e36,e28,e30}; 
с17 = {e34,e41,e61,e20,e23,e35}; 
с18 = {e54,e55,e72,e51,e52,e67,e11,e25,e24,e46}; 
с19 = {e11,e17,e18,e6,e7,e15}; 
c0 = {e61,e58,e56,e53,e54,e49,e47,e68,e60}. 
 



 

 

 
Fig. 9. Disjoint connections. 

 
The totality of simple and isometric cycles forms the topological drawing of the planar sub-
graph (Fig. 10). 
 

 
Fig. 10. Topological drawing of the planar subgraph. 

5. Conclusion 
In this paper, we consider the issues of applying the diakoptic approach for construction of a 
topological drawing of the planar part of a non-planar graph. It is demonstated that the solu-
tion to the problem of distinguishing the planar part for the nonseparable subgraph of a non-
planar graph consists of two stages. 



 

 

The first stage in constructing a topological drawing is based on the matroid properties of the 
set of graph isometric cycles. A method is proposed for isolating a topological drawing of the 
planar part of a non-planar graph using structural number algebra methods. The initial in-
formation for solving the problem on the first stage is the set of graph isometric cycles, which 
allows us to reduce the solution to discrete optimization methods. 
The second stage of joining cycles is based on the methods of vector algebra of intersections. 
The basis of this method is the construction of a coordinate-base system, which is based on 
the rim of the isolated planar part of the graph obtained on the first stage of the proposed so-
lution. 
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